Search results for "noise-enhanced stability"
showing 3 items of 3 documents
Breather dynamics in a stochastic sine-Gordon equation: evidence of noise-enhanced stability
2023
The dynamics of sine-Gordon breathers is studied in the presence of dissipative and stochastic perturbations. Taking a stationary breather with a random phase value as the initial state, the performed simulations demonstrate that a spatially-homogeneous noisy source can make the oscillatory excitation more stable, i.e., it enables the latter to last significantly longer than it would in a noise-free scenario. Both the frequency domain and the localization of energy are examined to document the effectiveness of the noise-enhanced stability phenomenon, which emerges as a nonmonotonic behavior of an average characteristic time for the breather as a function of the noise intensity. The influenc…
Signatures of noise-enhanced stability in metastable state
2005
The lifetime of a metastable state in the transient dynamics of an overdamped Brownian particle is analyzed, both in terms of the mean first passage time and by means of the mean growth rate coefficient. Both quantities feature non monotonic behaviors as a function of the noise intensity, and are independent signatures of the noise enhanced stability effect. They can therefore be alternatively used to evaluate and estimate the presence of this phenomenon, which characterizes metastability in nonlinear physical systems.
Statistics of residence time for Lévy flights in unstable parabolic potentials
2020
We analyze the residence time problem for an arbitrary Markovian process describing nonlinear systems without a steady state. We obtain exact analytical results for the statistical characteristics of the residence time. For diffusion in a fully unstable potential profile in the presence of Lévy noise we get the conditional probability density of the particle position and the average residence time. The noise-enhanced stability phenomenon is observed in the system investigated. Results from numerical simulations are in very good agreement with analytical ones.